
SQLite—A Standalone,
Embeddable Database Engine

Albert Danial
LAMPsig Meeting

May 21, 2005

Overview of SQLite in
Three Parts

● Introduction to SQL

● SQLite

– Features

– Comparison to traditional SQL engines

– Installation
● Demos

– Unix command line & shell scripting

– C interface

– Perl interface

– SQL with a real database

SQL = Structured Query Language

● A computer language for creating and extracting data
from a “database” in a relational manner

● SQL is interpreted by SQL engines or programs.
Examples: Oracle, DB2, Sybase, MySQL, Postgres,
Firebird, Microsoft SQL Server, SQLite

● Initial concept by E.F. Codd, IBM, 1970 (but Oracle
was first to market)

● ANSI standard since 1986

● My opinion: incomplete as a computer language (still
need Perl, PHP, Python, C, tcl, etc. to drive SQL)

● While incomplete as a language, SQL can be incredibly
complex; take years to master (and I'm not a master!)

Why SQL?

● SQL came into being to solve problems in business
applications.

● Wade through large collections of data and extract
useful information.

● SQL is a complicated solution.

● If you can get away with it, a flat file + tools like
grep & wc go a long way.

● If you need to write code (Perl, PHP, Python, C) to
extract useful information, SQL may help.

● SQLite minimizes the start-up headaches involved
with an SQL solution.

SQL Basic Concepts

● Information is stored in tables.

● You define the number of columns in a table and the kind
of data that each column can hold.

● SQL terminology: a column is called a field.

● A database has one or more related tables.

● SQL commands to

– Insert rows into tables

– Extract rows from tables

– Create/delete entire tables

– Manage user access & permissions (n/a to SQLite)

SQL Basic Concepts, continued

● You have to decide how many tables to create,
and which fields to put in the tables.

● A given collection of tables and their fields is
known as a database schema.

● Much thought needs to go into the design of the
database schema. Goals:

– A piece of information only appears once.

– Queries (data extraction) are easy.

– Queries are fast.

SQL Schema Example

● You want to archive your family's recipes.

● You want to perform searches that answer
questions like:

– Which dessert dishes require four eggs?

– Is there an Italian appetizer that includes
raisins?

– What should I put on my shopping list to
make French bread, a cheesecake, and
chocolate chip cookies?

Storing a Cookbook
● A recipe has these attributes:

– Has a name.

– Belongs to one or more categories (Italian,
dessert, sea food, etc.).

– Has one or more ingredients.

– Has preparation instructions, yield,
preparation duration, nutritional information,
source, rating, et cetera.

● Storage options:

– text file + use an editor to search for recipes.

– text file + write a program to do searches.

– Spreadsheet + pivot tables (?) + macros (?)

– SQL database

A naïve SQL Schema

name, cat1, cat2, cat3, yield, ingr1, ingr2, ingr3, ingr4, .., ingr20, prep

A single table with 26 fields, each of which is a string.

Identical to a comma separated value data loaded into
a spreadsheet.

Severe Limitations:
 - hardcoded maximum number of categories (3 here)
 - hardcoded maximum number of ingredients (20 here)

Table RECIPE

A Better Schema

RECIPE
id
name
yield
prep

category
recipe_id

CATEGORY_LIST INGREDIENT_LIST
ingredient
recipe_id
quantity
units

Separate tables for
● food categories
● ingredients
● instructions

The arrows denote keys (compatible fields in different tables).

Sample Data

id,name,yield,prep

category, recipe_id

ingred., recipe_id, quant., units
Table RECIPE Table INGREDIENT_LIST

Table CATEGORY_LIST

27, “burgers” , 4, “Heat grill...”
28, “apple pie”, 6, “Peel apples...”
29, “omelettes”, 2, “whisk eggs...”

“American”, 27
“barbeque”, 27
“dessert”, 28
“picnic”, 27
“breakfast”, 29
“brunch”, 29

“Ground beef” , 27, 1, lb
“burger buns” , 27, 4,
“ketchup” , 27, 20, oz
“mustard” , 27, 10, oz
“apples” , 28, 3, lb
“flour” , 28, 1, cup
“onions” , 29, 1,
“onions” , 27, 1,
“ketchup” , 29, 5, oz
“sugar” , 28, 1, cup
“moz. Cheese” , 29, 8, oz

The “Better” Schema
is also Deficient

We are violating data duplication in two places:

The same category can appear many times in the
category_list table.

The same ingredients can appear many times in the
ingredient_list table

Joins

● The fields
 recipe.id
 ingredient_list.recipe_id
 category_list.recipe_id
are keys which link the tables together.

● An SQL query that establishes a relationship
between tables by equating their keys is called a
join.

● Example:

select name,ingredient from recipe, ingredient_list
 where recipe.name = “apple pie” and
 recipe.id = ingredient_list.recipe_id;

SQLite http://www.sqlite.org/

● A command line tool which implements an SQL
engine and a C library you can link your code
to.

● The engine is easy to use.

● The engine is fast.

● Implements most of ANSI 92 standard.

● ACID compliant

● Stand-alone (or embedded), not client/server.

● Entire database stored in one file.

● Public domain license.

ACID?

● Atomic—database transactions are done “all
or nothing”. If a failure happens while
processing, the transaction will be rolled
back.

● Consistent—database will not insert bogus
data.

● Isolated—transactions that arrive
simultaneously are queued up, executed
sequentially so transactions don't conflict.

● Durable—a transaction that has been
committed won't be lost.

Comparison to Client/Server DB's

● Oracle/Postgres/
MySQL/MS SQL/...

● Need a database daemon (a database
server program running somewhere).

● Considerable effort to install, set up.

● Security issue w/open ports.

● Database client can be on remote
computer.

● Have to “dump” database to a file to
relocate it, back it up.

● Easily handle simultaneous users.

● MySQL/Postgres performance at best
equals SQLite; mostly slower.

● SQLite
● No daemon.

● Easy to install; trivial to create
database.

● No open ports.

● Database is one file.

● Easy to write stand-alone SQL app.

● Can force entire database to reside in
memory (no db file!)

● Cannot run in client/server mode (?)

● File system must handle locking.

● Small code base; great for embedded
processors (e.g., runs in VxWorks).

● “Manifest typing” -- can insert any
datatype in any field but will store in
native form where it can.

When to use SQLite?

● Data storage, information extraction too
cumbersome for a flat file or spreadsheet.

● Want full power of SQL.

● SQL performance is important.

● Type checking not important.

● Only need to support one writing user at a time.

● Don't need to run the database app on a remote
computer (unless it can see the database file via
NFS for example).

Installation

Use v3.2.1 (latest as of May 21, 2005) or newer when
available.

cd /tmp
wget http://www.sqlite.org/sqlite-3.2.1.tar.gz
tar zxfv sqlite-3.2.1.tar.gz # 1.3 MB file
mkdir build
cd build
../sqlite-3.2.1/configure --prefix=/usr/local/sqlite-3.2.1 \
 --with-tcl=/usr/local/tcl8.4.9/lib
make

make test # Requires tcl/tk. 19,747 tests; takes a few minutes.

parts of v3.2.1 “make install” rely on tclsh. Not necessary.
make -n install | grep -v tclsh > my_make_install
sh my_make_install

ln -s /usr/local/sqlite-3.2.1/bin/sqlite3 /usr/local/bin/sqlite

Optional dependencies: readline, tcl

Quick Installation
(but can't do make test)

No tcl, no shared libraries, small and fast executable.

cd /tmp
wget http://www.sqlite.org/sqlite-3.2.1.tar.gz
tar zxfv sqlite-3.2.1.tar.gz # 1.3 MB file
mkdir build
cd build
CFLAGS=-O3 ../sqlite-3.2.1/configure \
 --prefix=/usr/local/sqlite-3.2.1 --without-tcl --disable-shared
make
make install # simple installation without tcl
ln -s /usr/local/sqlite-3.2.1/bin/sqlite3 /usr/local/bin/sqlite

If you have GCC v4.1 (beta) on a Pentium4, try
CFLAGS=”-O3 -march=pentium4 -mcpu=pentium4 -fomit-frame-pointer -pipe”
(courtesy Ron Young)

http://anchor.homelinux.org/SQLiteTuning
SQLite Performance Tuning wiki by James Done, Kevin Croft:

Perl Programmer? Install DBD::SQLite

cd /tmp
wget http://search.cpan.org/CPAN/authors/id/M/MS/MSERGEANT/DBD-SQLite-1.08.tar.gz

tar zxfv DBD-SQLite-1.08.tar.gz
cd DBD-SQLite-1.08
perl Makefile.PL # requires DBI
make
make test
make install

Or, if you have CPAN configured,

perl -MCPAN -eshell
cpan> install DBD::SQLite

SQLite 'Manifest' Typing

Conventional database table create command:

create table T(a integer primary key,
 b varchar(200));

In SQLite, the field type declarations (green text)
are optional. The following statement will work:

create table T(a, b);

SQLite will try to store numeric data in binary form
if it can. If it cannot it will store the data as a string.

Create 1st SQLite Database

> sqlite -version # should show 3.2.1

> echo "create table T(a,b);" | sqlite simple.db
> echo "insert into T values ('October', 9);" | sqlite simple.db
> echo "insert into T values ('November', 13);" | sqlite simple.db

> sqlite simple.db "insert into t values ('December', 11);"

> sqlite simple.db '.tables'
> sqlite simple.db '.schema'
> sqlite simple.db '.dump'

> sqlite simple.db 'select * from T where b > 10;'

> sqlite simple.db “insert into T values (3.14159265, 'pi');” # ??

Enter the following at a Linux/Unix command line:

~/.sqliterc

Get a nicer view of the output with these settings in
your ~/.sqliterc:

.header on

.mode column

Add a lot of data to 1st Database

> perl -e 'for (1..3) { printf "insert into T values
(\"string_%04d\", %4d);\n", $_, $_; }'

Only 100 inserts/second ? That's lame!

Generate a bunch of insert statements from the
command line:

Pipe the commands directly into sqlite:

> time perl -e 'for (1..1000) { printf "insert into T values
(\"string_%04d\", %4d);\n", $_, $_; }' | sqlite simple.db
real 0m10.295s
user 0m0.040s
sys 0m0.170s

Produces this output:

insert into T values (“string_0001”, 1);
insert into T values (“string_0002”, 2);
insert into T values (“string_0003”, 3);

Transactions for Faster Inserts

> rm simple.db
> echo “create table T(a,b);” > inserts.sql
> echo “begin transaction;” >> inserts.sql
> perl -e 'for (1..1000) { printf "insert into t values(\"string_%04d\",
%4d);\n", $_, $_; }' >> inserts.sql
> echo “commit;” >> inserts.sql

> time cat inserts.sql | sqlite simple.db
real 0m0.133s
user 0m0.030s
sys 0m0.000s

Group inserts together in blocks of thousands of operations
to increase insert performance by orders of magnitude.

Increase number of inserts from 1,000 to 50,000:

real 0m1.384s
user 0m1.170s
sys 0m0.020s

36,000 inserts/second – much better!

Aside: Specs for Machine
Used in Demos

● Dell Precision 360

● Pentium 4, 3.0 GHz

● 1 GB RAM

● Fast IDE hard drive (don't know brand, model)

● RedHat Enterprise Linux v3.0

● 2.4.21 kernel

● In other words, nothing fancy.

Write C code for
maximum insert speed

sqlite_insert.c is a small (~120 line) C program that
creates a table with four fields (one integer, three reals).
It writes the database to /tmp/a.db

Usage: ./sqlite_insert <N> <X>

 Insert <N> rows into a table of an SQLite database
 using transaction sizes of <X>.
 The table has four columns of numeric data:
 field_1 integer
 field_2 float
 field_3 float
 field_4 float
 The integer field will have values 1..<N> while the
 double precision values are random on [-50.0, 50.0]

> ./sqlite_insert 100000 50000
 100000 inserts to /tmp/a.db in 0.774 s = 129200.64 inserts/s

> ls -l /tmp/a.db
-rw-r--r-- 1 al al 3909632 Mar 12 11:24 /tmp/a.db

Wow!

A Real Database: Baseball Statistics

● Data from
http://baseball1.com/statistics/lahman52_csv.zip

● Information on teams, players, managers, batting, fielding,
awards, salaries, etc. from 1871 to 2004.

● I converted .csv files to an SQLite dump file:

wget http://danial.org/sqlite/lampsig/baseball.sql.bz2

● 21 tables, 40 MB SQL dump file, 20 MB SQLite database

● Create the database with

bunzip2 -dc baseball.sql.bz2 | sqlite bb.db

Has >340,000 SQL statements so will take ~ a minute to create
bb.db

Sample Queries
> sqlite bb.db '.tables'
> sqlite bb.db '.schema'

Enter sqlite's interactive mode
> sqlite bb.db

sqlite> select count(*) from batting;

sqlite> select count(*) from fielding;

Which team has the best record in history?

sqlite> select name,yearid,w,l from teams;

sqlite> select name,sum(w),sum(l) from teams
 group by name;

sqlite> select name,sum(w),sum(l),sum(w)/sum(l)
 from teams group by name;

sqlite> select name,sum(w),sum(l),sum(w)/sum(l) as WL
 from teams group by name order by WL;

Joins
Which NL 3rd baseman has the most stolen bases in a season?
● Player position (3rd base) in Fielding table
● Stolen base data in Batting table
● Player's name in Master table

Create the query one step at a time:
● All 3rd basemen
 select * from Fielding F where F.pos = "3B";

● All 3rd basemen in National League
 select * from Fielding F where F.pos = "3B" and F.lgID = "NL";

● Names of 3rd basemen in National League
 select M.namefirst, M.namelast from Fielding F, Master M
 where F.pos = "3B" and F.lgID = "NL" and
 M.playerID = F.playerID;

● Names of 3rd basemen and in National League & their stolen bases
 select M.namefirst, M.namelast, B.sb from
 Fielding F, Master M, Batting B
 where F.pos = "3B" and F.lgID = "NL" and
 M.playerID = F.playerID and B.playerID = M.playerID;

Performance Tip: Indices
● I thought SQLite was supposed to be fast?!

● For optimal join performance, the join fields should
be indexed.
create index i1 on master(playerid);
create index i2 on fielding(playerid);
create index i3 on batting(playerid);
create index i4 on fielding(lgid);

● Repeat:
Names of 3rd basemen and in National League & their stolen
bases
 select M.namefirst, M.namelast, B.sb from
 Fielding F, Master M, Batting B
 where F.pos = "3B" and F.lgID = "NL" and
 M.playerID = F.playerID
 and B.playerID = M.playerID;

Finish the task...

● name of third baseman with most stolen bases in NL
in two steps: first find max stolen bases among 3rd
basemen in NL:
select max(B.sb) from Fielding F, Master M, Batting B
 where F.pos = "3B" and F.lgID = "NL" and
 M.playerID = F.playerID and
 B.playerID = M.playerID;

● second, find name of those matching:
select M.namefirst, M.namelast, B.sb from
 Fielding F, Master M, Batting B
 where F.pos = "3B" and F.lgID = "NL" and
 M.playerID = F.playerID and
 B.playerID = M.playerID and
 B.sb = 129;

● Who can do it in a single query?

Subqueries
● Can be much faster than joins

● SQLite optimizer gets confused by nested
subqueries:

select playerid from fielding where pos = "3B" and lgid = "NL";

select playerid,sb from batting where playerid in
(select playerid from fielding where pos = "3B" and lgid = "NL");

select max(sb) from batting where playerid in
(select playerid from fielding where pos = "3B" and lgid = "NL");

select playerid,sb from batting where sb = (
select max(sb) from batting where playerid in
(select playerid from fielding where pos = "3B" and lgid = "NL"));

Why does this take so long? The command below is fast...

select playerid,sb from batting where sb = 129;

Conclusion

● Client/server database engines are overkill for
many applications.

● SQLite is simple, fast, powerful.
● SQLite lowers the barrier to entry for data

storage, manipulation with SQL.
● An excellent tool for learning SQL.

● An excellent tool for heavy-duty SQL work.

